
tensile
ATool for Literate Programming

Main Program

Taylor Venable
taylor@metasyntax.net

December 30, 2016

Abstract

Documentation for the Tensile literate programming tool.

Contents

I User’s Guide 2

1 Introduction 2

2 Tensile Syntax 2
2.1 Documentation ChunkThreads . 3
2.2 Source Output: Non-Stop Mode . 4

3 Program Options 5
3.1 Complete Option List . 5

3.1.1 Standard Options . 5
3.1.2 File Handling Options . 5
3.1.3 Tangled Output Options . 5
3.1.4 Woven Output Options . 5
3.1.5 Deprecated Options . 5

4 Hooks 6
4.1 Tangling Hooks . 6
4.2 Weaving Hooks . 6

5 Intermediate Representation 6
5.1 Source Code . 6

5.1.1 References in Noweb-Compat Mode . 7
5.2 Documentation . 8

II Implementation 9

mailto:taylor@metasyntax.net

Taylor Venable TensileManual (Version 1)

6 Generating Intermediate Representation 10
6.1 Noweb Compatibility . 10
6.2 Parsing the Input File . 11

6.2.1 Reading: Documentation Mode . 12
6.2.2 Reading: Source Mode . 13

7 Tangling Source Code 15

8 Weaving Documentation 17
8.1 Writing Source . 19

A Bugs 25

Part I

User’s Guide
1 Introduction

Tensile is a tool for literate programming. It was inspired by Noweb, a simple and language-agnostic
implementation of Donald Knuth’s original ideas. Tensile attempts to go beyondNoweb by providing
a easily pluggable architecture where external tools can easily tie into the simple native processing
capabilities provided by the Tensile core. More on this in a bit. The name “Tensile” was chosen
because it is a measure of material strength, viz. howmuch a material can be stretched before it fails.
In particular, spider webs have very high tensile strength and can support incredible loads compared
to the cross-section of their strands. This is the connection that makes it a good name choice for a
literate programming tool, a nod to Donald Knuth’s original WEB tool.

Literate programming is a way of writing a computer program so that the documentation is em-
bedded alongside the actual program code. This is a different approach from simply writing code
comments, because there is a greater emphasis on the documentation, and writing it in such a way
as it clearly explains not only the mechanism of the code, but also the rationale. The objective is to
include all facets necessary to completely describe the program, both for humans and for machines,
in the same file. From this file then, we can either “tangle” it, producing the program code, or “weave”
it to produce the fully typeset documentation.

2 Tensile Syntax

The basic syntax of Tensile is derived from that of Noweb, but contains extensions. Source files are
read from top to bottom, and contain a mix of documentation and source code; one could say that
when reading the file, Tensile is either reading in “documentation mode” or “source mode.” Tensile
starts off in documentation mode at the start of the file. When it encounters a line that starts with
double left angle-brackets, and ends with double right angle-brackets and an equal sign (i.e. <<⟨unit-
name⟩>>=, for any unit-name) then Tensile enters source mode. While in source mode, every line
that is read is considered source code for the program module designated unit-name. To get back
to writing documentation, insert a solitary at-sign in the line at the first column. The next line will
begin documentation again. When a solitary at-sign is encountered in the middle of documentation,
it is ignored (it will not appear in the output).

While in source mode, references to other program modules can occur. These start with double
left angle-brackets in the first column, and end with double right angle-brackets at the end of the

30th December 2016 Page 2 of 25

Taylor Venable TensileManual (Version 1)

line (i.e. <<⟨unit-name⟩>>). When tangled, the definition of the program module unit-name will be
inserted at the point it is referenced in another module. In the woven output, however, you will only
see a reference to some code to be given later. This splits up the code into smaller units so you can
focus on specific elements in turn in your documentation.

When defining programmodules, you can use the same namemore than once. Modules with the
same name are concatenated together in the tangled output in the order they were encountered in the
Tensile source. In the woven output they will appear in the order given with any intervening infor-
mation that appeared in the source, and the second and later definitions are indicated as additions to
the existing module definition. The special module name “…” is reserved as a way of indicating that
the previously defined module, whatever it was, should be extended. This prevents you from having
to type the name again, reducing typing errors.

2.1 Documentation ChunkThreads
As I learnt more about literate programming and began to apply it at work, a friend and colleague
asked how to generate API documentation from literate source code. Previously we had been using
Doxygen to generate HTML output to describe our functions, especially in Java and Lua code. Thus
the problem arose of how to separate the internal documentation from the external documentation.
From my research it seems historically that any such distinction (if it was ever implemented, which
seems to have been rare) would be up to the person writing the documentation to keep them apart
and only typeset what was needed. However, we saw value in keeping both the internal implemen-
tation and external interface near each other for the sake of making things easier to understand for
engineers working on the internals. Thus, we designed a way to apply a field called a “thread” to
each documentation chunk. Threads make it easy to follow a single audience or topic (a “thread” of
discussion, if you will)1 through the document. Or instead you might choose to build a complete
document that weaves all threads together into a single analysis. Additionally, and the true objective
of using this system, is to establish a single common thread that can be woven through several literate
source files, which can then be bundled up and placed into a single document which covers that idea.

There is a single hidden thread which binds all pieces of documentation together: in our code we
call it * but you should not refer to it by name ever. This thread is in all documentation chunks, even
when not referenced directly, and even when no threads at all are identified. Otherwise, to use any
thread of your own making, use the following to start a documentation chunk: @|⟨thread-name⟩|.
You may include as many thread names, separated by vertical bars, as you like. The effect of such
a thread declaration persists until another documentation chunk starts. Not supplying any thread
names at all (i.e. just using the standard documentation chunk syntax) has the effect of cancelling
any threads currently in play for the upcoming chunk.
@|one|two|
This text is in threads one and two, as well as in thread *.
@|one|
This text is only in thread one, as well as in thread *.
@
This text is only in thread *.

The final example maintains backward compatibility with Noweb, in addition to just being good
sense. To select threads when weaving, just use the -thread command line switch.

1Theoriginal idea floated bymy friendwas to use the term “strand” which gotme thinking about threads, but ultimately
the word “thread” had a lot more punning potential and that’s why I chose it.

30th December 2016 Page 3 of 25

Taylor Venable TensileManual (Version 1)

2.2 Source Output: Non-Stop Mode
I have found it occasionally useful, whenworking on Java code especially, towrite at the same location
in the literate source code both the declaration and initial definition of class or instance variables.
With Tensile certainly this can be done by building up separate units interleaved with one-another,
for example:

Example Literate Source
public class Foo {
<<Variables>>
public Foo() {

<<Initialize Variables>>
}

}
@
Here, i represents some important value.
<<Variables>>=
private int i;
<<Initialize Variables>>=
this.i = 42;
@
The variable j is significantly less important.
<<Variables>>=
private int j;
<<Initialize Variables>>=
this.j = 0;

This is most useful for reading the code for understanding, but less so when reading for correct-
ness. The woven output of this is exactly as the input: both the Variables and the Initialize Variables
units are split into two segments of output. It becomes more difficult, I find, to correlate these two
separate fields in the mind than it is when you simply see them written out fully separately, especially
when you’re already used to doing so in the normal layout of plain machine source code. Therefore,
to enhance the ability to judge correctness in situations like this, we provide a command which looks
very similar to the reference command, which prints the source code in what I call “non-stop mode”;
it appears in the input like this: <<⟨unit-name⟩>>* and when woven, produces the entire output of
the unit without breaks. Given the previous input, using this:
<<Variables>>*
<<Initialize Variables>>*

produces output like this:

⟨Variables⟩≡
private int i;
private int j;

⟨Initialize Variables⟩≡
this.i = 42;
this.j = 0;

In this way, a large amount of code can be built up a piece at a time, and then later printed in a
manner that can be easily verified. Note that <<⟨unit-name⟩>>* only has meaning inside a docu-
mentation chunk, and when it appears inside a source code chunk it has no special meaning (viz. in
Noweb-compatible mode it means the definition of unit-name followed by a star, and in strict mode
means quite literally what it says).

30th December 2016 Page 4 of 25

Taylor Venable TensileManual (Version 1)

3 ProgramOptions

By default, Tensile will weave a single input file, writing the output to a file with the same name as the
input file, but with the TEX file extension .tex instead of the extension (if any) used by the input file.
It is recommended that input files use the extension .tnsl as convention. To disable the automatic
weaving, use either the -no-docs or the -dont-weave flag.

To tangle source code, provide the name of the unit to tangle with the -R option, like so: tensile
-Runit input.tnsl. Alternatively, the -extract-all option tangles all toplevel units found in the
input file. Tangled output is written to files with the names specified as the unit name.

3.1 Complete Option List

3.1.1 Standard Options

-help Show a help message.

3.1.2 File Handling Options

-indented-refs Allow references to be indented in source.
-list-tops Print all toplevel units and quit.
-noweb-compat Enable Noweb-compatible parsing.
-show-tops Same as -list-tops.
-write-ir Write intermediate form to file.

3.1.3 Tangled Output Options

-extract-all Extract all toplevel units.
-tangle-to ⟨file⟩ Write the tangled source to file. Only works if only one unit is extracted;

if more than one unit is tangled then this option is ignored.
-unit ⟨name⟩ Tangle unit name.

3.1.4 Woven Output Options

-dont-weave Don’t produce woven documentation output.
-hide-margin-tags Don’t display definition tag number in the margin.
-hide-defn-page Don’t show references to first definition.
-hide-back-refs Don’t print references to usage location.
-hide-source-code Don’t output source code in documentation.
-no-docs Same as -dont-weave.
-thread ⟨thread⟩ Only weave output for doc chunks in thread name.
-weave-to ⟨file⟩ Write result to file.

3.1.5 Deprecated Options

The following options are available in Noweb and are also honored by Tensile, although I discourage
their use.

-R⟨name⟩ Same as -unit ⟨name⟩. Clarification: there is no space between the -R
and the unit name; example -RHelloWorld.java.

-o ⟨file⟩ Same as -weave-to ⟨file⟩.

30th December 2016 Page 5 of 25

Taylor Venable TensileManual (Version 1)

4 Hooks

Tensile provides extensibility by facilitating the usage of “hooks” throughout the process of trans-
forming literate code into machine source code and documentation. To set these, simply assign the
correct field in the global hooks object in your .tensilerc file. Some examples can be found in the
hooks.tnsl file.

4.1 Tangling Hooks
There are currently no hooks available when tangling source code.

4.2 Weaving Hooks
There are several hooks that can be used to modify how TEX code is output when generating docu-
mentation.
hook.doc.text

This function takes as its only argument the documentation chunk read by Tensile; what it
returns will be used as the output for that documentation chunk.

hook.doc.preExpand
Theonly argument to this function is the source code chunk before unsafe TEX characters (such
as “\” and “{”) are turned into their TEX equivalents. What it returns will be expanded unless
g_opts.expand_unsafe_tex is true. In certain situations, it may be useful to set the expansion
option to false from within this function to prevent expansion.

hook.doc.postExpand
Takes a single argument, which is the source text after the unsafe TEX characters in it have been
expanded into their TEX equivalents. The return value will be sent directly to the output stream.

5 Intermediate Representation

To facilitate easier addition of new features at various points in the process of operating on literate
source, Tensile uses an intermediate representation of the structure of the document after its syntax
has been parsed. This representation tracks all source code chunks, the documentation blocks, and
all references between the two. Because Lua has a prototype-based object system, the intermediate
representation is completely open-ended in what it can support. A hypothetical extension could
process this representation and add new fields based on the literate file, then utilize these as part of
some output extension.

The specification for the base intermediate representation is an object with three fields: src, doc,
and ref.

5.1 Source Code
The src field is itself an object. Keys in the object are the names of themodules as defined in the liter-
ate file. The values are arrays that contain information on that module in sequence. When tangling,
these are processed in order to create the source output.

Each entry in the array that comprises the module definition is an object. Regardless of function,
each has a type field which indicates its purpose. The three defined types are:
code Defines the actual source code to be used. Source code chunks have these fields:

text Contains the source text. For both the tangled andwoven outputs, the source
text is printed. No facility is currently provided for pretty printing.

30th December 2016 Page 6 of 25

Taylor Venable TensileManual (Version 1)

ref Identifies a reference to another source code chunk. A reference chunk also contains the
following fields:
name Indicates the name of that chunk. When tangling, these references are fol-

lowed when encountered, and the referencedmodule is printed immediately.
For woven output, the name of the reference is displayed in angle brackets.

indent The level of indentation of the contents of the referenced source code unit.
This is used when operating in Noweb-compatible mode.

followed When true, indicates that the referenced code unit is followed on the same
line by additional code inside the referring definition. This is used to decide
when to insert line breaks in the tangled and woven output.

break Indicates that the definition was broken up into multiple units in the literate source. A
break entry has no influence on the tangled output, but it does affect weaving by halting
source text output when encountered.

5.1.1 References in Noweb-Compat Mode

When using Noweb-compatibility mode you can have references occur at any point in the definition,
not just at the start of the line like you get in strict mode. Here’s a good example from a Scheme
program:

(cond <<beta>>)
<<beta>>=
((integer? n) "integer")
(else "something else")

This generates intermediate representation that looks like this:

src = {
["alpha"] = {
{

["text"] = "(cond ",
["type"] = "code",

},
{

["indent"] = "6",
["type"] = "ref",
["name"] = "beta",
["followed"] = true,

},
{

["text"] = ")\
",

["type"] = "code",
},

},
["beta"] = {
{

["text"] = "((integer? n) \"integer\")\
(else \"something else\")\
",

["type"] = "code",
},

},
}

Reading this, we see there is a unit called alpha which contains a reference to beta which will be
indented 6 spaces (the length of the string which precedes the reference), and which is followed by

30th December 2016 Page 7 of 25

Taylor Venable TensileManual (Version 1)

a closing parenthesis. Looking at the definition of beta we see that it is completely normal, nothing
about where it is located appears; this is necessary because it is possible to refer to beta from another
location in another unit with a different indentation or perhaps no indentation at all. Thus, all the
logic of indentation and handling line endings must be carried out by the code which processes the
reference. The output of this particular fragment is, of course:

(cond ((integer? n) "integer")
(else "something else"))

Astute readers will notice that all definitions which end at the line include the newline in their
text field. This becomes troublesome when outputting the source: without special handling we
end up with too many newlines injected in the output, possibly changing the meaning of the code.
This is the scenario that necessitates the use of the followed field. When followed is true then we
suppress the output of the newline at the end of the source text, because there’s going to be more code
immediately following it in the parent.

Risking further diversion, we must realize however that simply checking the followed field is
enough to determine if a newline should be written after the unit’s source code; we also need to check
and see if it is the last element of the parent unit or simply one of a number of units. A simple example
is:
<<alpha>>=
alpha
<<beta>>
<<delta>>

<<beta>>=
beta
<<gamma>>
<<delta>>=
delta
<<gamma>>=
gamma

Obviously the expected output of this is:

alpha
beta
gamma
delta

Using only the rule about followed we would end up with an extra space between gamma and
delta: the unit gamma is not followed, so one newline is inserted (perfectly normal), but beta is not
followed either so another newline is inserted as well. This leaves an empty line between gamma and
delta: not what we wanted or expected. Thus, we only add newlines at the end of references thus
inserted when the unit is both not followed, and last in the list of all units. For this example, gamma
is the last element in beta, so a newline is inserted. However, beta is not the last element in alpha,
so a newline is suppressed there. The result is a single newline between the text gamma and the text
delta: exactly as we expected.

5.2 Documentation
The doc field is an array of objects. Each object represents a piece of documentation found in that
order in the literate source code. Documentation is not emitted during tangling, but is of course
fundamental to weaving. Each object has a type field with one of these values:

text This element represents a documentation chunk, in TEX code. The following fields must
also be present within the object.

30th December 2016 Page 8 of 25

Taylor Venable TensileManual (Version 1)

text Contains the documentation text.
tags A list of tags that apply to this documentation chunk; these are used to cate-

gorize the documentation chunks.
def This element represents the definition of a program module, the code of which will be

printed in the woven output. The name field indicates the name of the program module,
which is looked up from the src part of the intermediate representation (covered above).
If a field called start is present, this indicates the index in the program module entry list
where woven output generation starts. This is to facilitate the fact that a single program
module can be broken up. The index will indicate the element immediately following a
break element in the program module definition list.

def* This is much like def above, but it indicates that the output is to occur in “non-stop” mode,
whichmeans that neither breaks nor the starting index are honored: the entire source code
comprising the unit is output at once. This is trigged by the use of the <<⟨unit-name⟩>>*
syntax.

The part about how definitions are broken bears repeating, and an example. If a programmodule
is split up into separate locations in the literate source, it will contain a break element in the src part
of the intermediate representation, and the matching documentation reference will contain a start
field indicating the index of that element following that break in the programmodule definition array.
Thus, if our literate code contains this:

Documentation of alpha.
<<example>>=
alpha
@
Documentation of beta.
<<example>>=
beta

then the intermediate representation will look like this:

{
src = {

["example"] = {
{ type = "code", text = "alpha" },
{ type = "break" },
{ type = "code", text = "beta" }

}
},
doc = {

{ type = "text", text = "Documentation of alpha." },
{ type = "def", name = "example" },
{ type = "text", text = "Documentation of beta." },
{ type = "def", name = "example", start = 3 }

}
}

Part II

Implementation

30th December 2016 Page 9 of 25

Taylor Venable TensileManual (Version 1)

10a ⟨tensile 10a⟩≡
#!/usr/bin/env lua

⟨Gather CVS Information 10b⟩
⟨Generate Intermediate Representation 10c⟩
⟨Write Intermediate Representation 14b⟩
⟨Read Intermediate Representation 15b⟩
⟨Tangle — Create Source 15c⟩
⟨Weave — Create Documentation 17a⟩
⟨Find Toplevel Units 20a⟩
⟨Program Initialization 20b⟩
⟨Option Processing 20c⟩

10b ⟨Gather CVS Information 10b⟩≡ (10a)
version = {}
do

local rev = "$Revision$"
version.revision = rev:gsub("%$[^:]+: ", ""):sub(1, -3)
local date = "$Date$"
version.date = date:gsub("%$[^:]+: ", ""):sub(1, -3)

end

6 Generating Intermediate Representation

Our first function generates the Lua table to represent the literate code.

6.1 Noweb Compatibility
Tensile aims to provide a mode which is compatible with Noweb 2.11b, that which inspired Tensile.
There are several differences between what Noweb accepts and what Tensile provides in its default
strict mode:

• Noweb allows you to embed code references in the middle of lines which then expand inline.
Tensile forces code references to be on their own line. The former is more flexible, unless you’re
using C++ or doing a lot of bit shifting, in which case it may be better to have that restriction.

• Noweb treats an at-sign in column zero as a documentation block marker, whereas Tensile re-
quires it to be the only thing on the line. There isn’t really much pro or con to this, unless you
want to use perhaps a row of at-signs as a visual indicator in the file.

10c ⟨Generate Intermediate Representation 10c⟩≡ (10a)
function generateIR(file)

local state = "doc"
local code = nil
local doc = nil
local ir = {src = {}, doc = {}, ref = {}}
local unit = {}
local unitName = ""
local threads = nil
⟨Create Unit IR Object 11a⟩
⟨Create Documentation IR Object 11b⟩
⟨Flush Documentation to IR Structure 11c⟩
⟨Flush Code to IR Structure 11d⟩

30th December 2016 Page 10 of 25

Taylor Venable TensileManual (Version 1)

This helper function shall be called when we encounter a new program unit definition in the
code. If the name is not “…” then we are either reusing an old unit with the same name (in which
case we should find it) or we are creating a new unit (in which case we should create it). If there have
already been code entries given for that unit, we will insert a break marker before the location where
this new code will be entered. This allows the TEX output system to distinguish between the first part
of a module definition and any subsequent parts.

11a ⟨Create Unit IR Object 11a⟩≡ (10c)
local function defineUnit(name)

if name ~= "..." then
unitName = name
ir.src[unitName] = ir.src[unitName] or {}
unit = ir.src[unitName]

end
if #unit ~= 0 then

unit[#unit + 1] = { type = "break" }
end

end

A bit of a misnomer, this function creates an entry into the documentation part of the inter-
mediate representation that a code definition was given. This is called when we first encounter the
beginning of a definition. First we set the properties that all code definitions will have, viz. the type
(being “def ”) and the name of the unit. If the unit was already partially defined and the last item in
the definition was a break entry, we indicate in the documentation that it should start listing code at
the line that we are about to read, which will become the next entry in the source list of the unit.

11b ⟨Create Documentation IR Object 11b⟩≡ (10c)
local function createDoc(name)

ir.doc[#ir.doc + 1] = { type = "def", name = unitName }
if #unit > 0 and unit[#unit].type == "break" then

ir.doc[#ir.doc].start = #unit + 1
end

end

When we transition from one state to another, we’ll need to flush to the table the documentation
or code fragment that we’ve been reading.

11c ⟨Flush Documentation to IR Structure 11c⟩≡ (10c)
local function flushDoc()

if doc then
ir.doc[#ir.doc + 1] = { type = "text", text = doc }
if threads and #threads > 0 then

ir.doc[#ir.doc].threads = threads
end
doc = nil

end
end

11d ⟨Flush Code to IR Structure 11d⟩≡ (10c)
local function flushCode()

if code then unit[#unit + 1] = { type = "code", text = code } ; code = nil end
end

6.2 Parsing the Input File
To begin the actual work, we need only iterate through all the lines in the input file. Tensile works
on a single pass to produce an intermediate representation, which is then used for both tangling and
weaving; this allows fairly easy extension by manipulation of this intermediate representation. Note
that we do nothing TEX-specific in the reading phase, and thus any kind of documentation markup
that the user may desire can be used. (Although of course, TEX is the best!)

30th December 2016 Page 11 of 25

Taylor Venable TensileManual (Version 1)

There are two parser states, “doc” which indicates that the parser is reading documentation, and
“code” which indicates that we are processing a code unit definition.

12a ⟨Generate Intermediate Representation 10c⟩+≡ (10a)
for line in io.lines(file) do

if state == "doc" then
⟨Process Line in Documentation Mode 12b⟩

elseif state == "code" then
⟨Process Line in Source Mode 13a⟩

end
end
flushCode()
flushDoc()
return ir

end

6.2.1 Reading: Documentation Mode

If we’ve found a definition in the middle of a documentation block, then store any documentation
we’ve accumulated into the table. This may potentially be nothing at all if the at-sign were followed
immediately by a unit definition. Then we create a new unit for the name (or reuse an existing one),
and add the reference to this definition chunk to the documentation object. Finally we transition to
the code-reading state.

However, if we haven’t found a definition then we simply add the line to the documentation
block. If the line consists of merely an at-sign (in other words, the start of another documentation
block immediately following a documentation block) then we skip it.

Note: my little trickery here of using percent signs in the pattern is simply a way to be able to run
this program in Noweb-compatibility mode without having Tensile think that these are references to
a program unit with the name .* — we shall see this tactic several times throughout this source,
and I hope one day to exorcise it by providing a Noweb-like workaround for explicitly identifying
non-referencing << characters.

12b ⟨Process Line in Documentation Mode 12b⟩≡ (12a)
local name, kind = line:match("^%<%<(.*)%>%>([=*])$")
if name then

flushDoc()
if kind == "*" then

ir.doc[#ir.doc + 1] = { type = "def*", name = name }
elseif kind == "=" then

defineUnit(name)
createDoc(name)
state = "code"

else
error("Internal error: unknown kind " .. kind)

end
elseif line == "@" or line:match("^@|.+|$") or

(g_opts["noweb-compat"] and line:match("^@"))then
flushDoc()
threads = line:match("^@|.+|")
if threads then

local threadList = {}
for t in threads:gmatch("|[^|]+") do

threadList[#threadList + 1] = t:sub(2)
end
threads = threadList

end
else

doc = (doc and doc .. "\n" or "") .. line
end

30th December 2016 Page 12 of 25

Taylor Venable TensileManual (Version 1)

6.2.2 Reading: Source Mode
13a ⟨Process Line in Source Mode 13a⟩≡ (12a)

if line == "@" or line:match("^@|.+|$") or
(g_opts["noweb-compat"] and line:match("^@")) then

flushCode()
threads = line:match("^@|.+|$")
if threads then

local threadList = {}
for t in threads:gmatch("|[^|]+") do

threadList[#threadList + 1] = t:sub(2)
end
threads = threadList

end
state = "doc"

else
local name = line:match("^%<%<(.*)%>%>=$") or

(g_opts["noweb-compat"] and line:match("^%s*%<%<(.*)%>%>=%s*$"))

When we’ve found a definition while processing a definition, it’s time to dump the existing code
that we’ve been spooling up into the table, and create a new unit. We also add its place to the docu-
mentation part of the table.

13b ⟨Process Line in Source Mode 13a⟩+≡ (12a)
if name then

flushCode()
defineUnit(name)
createDoc(name)

else
local pre = nil
local post = nil
local ref = nil
if g_opts["noweb-compat"] or g_opts["indented-refs"] then

pre, ref, post = line:match("^(.*)%<%<(.*)%>%>(.*)$")
else

ref = line:match("^%<%<(.*)%>%>$")
end

We can also find a reference to another bit of code. If we do, we must first flush the code we’ve
read up until this point to the table. We then create a new entry for this unit list, with the type “ref ”
and pointing to the name of the reference.

In order to track forward and back references, we use a different part of the intermediate rep-
resentation. Each unit has a list of links in both directions. For both the reference and the parent
(which is the current unit name) we ensure that the reference link entries are present in the interme-
diate representation. Then we add a forward link from the parent to the child, and a backwards link
from the child to the parent. Now we can insert cross-references in the output document showing
where each unit is defined and used.

13c ⟨Process Line in Source Mode 13a⟩+≡ (12a)
if ref then

if pre and pre:len() > 0 then
code = (code or "") .. pre

end
flushCode()
unit[#unit + 1] = { type = "ref", name = ref }

if pre then
unit[#unit].indent = pre:len()

end
if post and post:len() > 0 then

unit[#unit].followed = true
end

30th December 2016 Page 13 of 25

Taylor Venable TensileManual (Version 1)

local r1 = ir.ref[unitName]
r1 = r1 or { fwd = {}, back = {} }
r1.fwd[#r1.fwd + 1] = ref
ir.ref[unitName] = r1

local r2 = ir.ref[ref]
r2 = r2 or { fwd = {}, back = {} }
r2.back[#r2.back + 1] = unitName
ir.ref[ref] = r2
if post and post:len() > 0 then

code = post .. "\n"
end

else

Otherwise this is just another line of code, andwe add it to the list of entries in the unit’s definition.
14a ⟨Process Line in Source Mode 13a⟩+≡ (12a)

code = (code or "") .. line .. "\n"
end

end
end

14b ⟨Write Intermediate Representation 14b⟩≡ (10a)
function writeIR(ir, file)

local stream = io.open(file, "w")
stream:write("return {\n")
stream:write(" src = {\n")
⟨Write Source Code Intermediate Representation 14c⟩
stream:write(" },\n")
stream:write(" doc = {\n")
⟨Write Documentation Intermediate Representation 14d⟩
stream:write(" },\n")
stream:write(" ref = {\n")
⟨Write Reference Intermediate Representation 15a⟩
stream:write(" }\n")
stream:write("}\n")
stream:close()

end

14c ⟨Write Source Code Intermediate Representation 14c⟩≡ (14b)
for k,v in pairs(ir.src) do

stream:write(" [" .. string.format("%q", k) .. "] = {\n")
for i,v2 in ipairs(v) do

stream:write(" {\n")
for k3,v3 in pairs(v2) do

stream:write(" [\"" .. k3 .. "\"] = ")
if type(v3) == "boolean" then

stream:write(v3 and "true" or "false")
else

stream:write(string.format("%q", v3))
end
stream:write(",\n")

end
stream:write(" },\n")

end
stream:write(" },\n")

end

14d ⟨Write Documentation Intermediate Representation 14d⟩≡ (14b)
for i,v in ipairs(ir.doc) do

stream:write(" {\n")
for k2,v2 in pairs(v) do

stream:write(" [" .. string.format("%q", k2) .. "] = ")
if type(v2) == "table" then

stream:write("{")
for i3,v3 in ipairs(v2) do

30th December 2016 Page 14 of 25

Taylor Venable TensileManual (Version 1)

stream:write(string.format("%q", v3))
if i3 < #v2 then stream:write(",") end

end
stream:write("}")

else
stream:write(string.format("%q", v2))

end
stream:write(",\n")

end
stream:write(" },\n")

end

15a ⟨Write Reference Intermediate Representation 15a⟩≡ (14b)
for k,v in pairs(ir.ref) do

stream:write(" [" .. string.format("%q", k) .. "] = {\n")
stream:write(" fwd = {")
for i2,v2 in ipairs(ir.ref[k].fwd) do

stream:write(string.format("%q", v2) .. ", ")
end
stream:write("},\n")
stream:write(" back = {")
for i2,v2 in ipairs(ir.ref[k].back) do

stream:write(string.format("%q", v2) .. ", ")
end
stream:write("}\n")
stream:write(" },\n")

end

15b ⟨Read Intermediate Representation 15b⟩≡ (10a)
function readIR(file)

return dofile(file)
end

7 Tangling Source Code
15c ⟨Tangle — Create Source 15c⟩≡ (10a)

function generateCode(ir, unit, output)
if not ir.src[unit] then

error("no such unit: " .. unit)
end
output = output or unit

pcall(os.rename, output, output .. ".bak")

stream, err = io.open(output, "w")

if not stream then
io.stderr:write("! Unable to open output file `" .. output .. "' for tangled code from unit `" .. unit ..

"'.\n")
io.stderr:write("! " .. err .. ". Emergency stop.\n")
os.exit(1)

end

local x, y = pcall(GenerateCode, ir, unit, stream, 0)
if not x then

pcall(os.rename, output .. ".bak", output)
io.stderr:write(y .. "\n")
os.exit(1)

end
stream:write("\n")
stream:close()
os.remove(output .. ".bak")

end

30th December 2016 Page 15 of 25

Taylor Venable TensileManual (Version 1)

function GenerateCode(ir, unit, stream, indent)
--print("Indenting " .. unit .. " at " .. indent .. " spaces.")
if not ir.src[unit] then

error("Program module '" .. unit .. "' was not defined.")
end
for i,v in ipairs(ir.src[unit]) do

if v.type == "code" then
local s = v.text
-- Insert indentation at every newline.
-- Strip off the last indentation (since the code
-- invariably ends with a newline).
if indent > 0 then

local strip = false
if s:sub(s:len()) == "\n" then

strip = true
end
s = s:gsub("\n", "\n" .. string.rep(" ", indent))
if strip then

s = s:sub(1, s:len() - indent)
end

end
-- Trim off the newline of the last entry.
-- Let the referring unit decide if it wants to put something
-- after it (v.type == ref && v.followed) or not.
if i == #ir.src[unit] then

s = s:sub(0, s:len() - 1)
end
stream:write(s)

elseif v.type == "ref" then
⟨Write Referenced Code 16⟩

end
end

end

We have encountered a reference to another piece of code. The first thing we need to do is to
indent the current line according to the current indentation level. This is necessary to properly prop-
agate the indentation level to the first line of the referenced code. Without it, we get a problem:

<<alpha>>=
<<beta>>

<<beta>>=
beta
<<gamma>>
<<gamma>>=
gamma

will produce output with gamma outdented rather than indented. This is because indentation assumes
that the top line starts already indented (with an indented reference, such as beta above, the text of
alpha includes the indentation before beta already) and only adds indentation for the second and
subsequent lines. Since the text of beta does not indent the reference to gamma any, the output stream
will not contain any indentation spacing, and the text gamma will not be indented at all — it is only a
single line. Thus, wemust propagate the current indentation level down for the first line of the nested
element here.

16 ⟨Write Referenced Code 16⟩≡ (15c)
stream:write(string.rep(" ", indent))
GenerateCode(ir, v.name, stream, indent + (v.indent or 0))
if i < #ir.src[unit] and not v.followed then

stream:write("\n")
end

30th December 2016 Page 16 of 25

Taylor Venable TensileManual (Version 1)

8 Weaving Documentation
17a ⟨Weave — Create Documentation 17a⟩≡ (10a)

function generateDoc(ir, output, start)
local stream = io.open(output, "w")

if stream == nil then
io.stderr:write("! Could not write to location `" .. output .. "'.\n")
os.exit(1)

end

Here we have the translation table that converts symbols we run across in the source into TEX
equivalents. Noweb’s code mode is not at all a verbatimmode, so we must escape all these characters
which normally have other meanings such as curly braces and the backslash. We also have to handle
some cases such as angle brackets and dashes, which when appearing together form other symbols
in the output (“geese feet” quotes or en dashes).

17b ⟨Weave — Create Documentation 17a⟩+≡ (10a)
local texTrans = { ["{"] = "\\{", ["}"] = "\\}",

["_"] = "_", ["-"] = "-{}",
["<"] = "<{}", [">"] = ">{}",
["\\"] = "\\verb+\\+", ["|"] = "\\verb+|+" }

local counter = 0
local subcounter = {}
local threads = nil
⟨Output by Thread Match 18b⟩
⟨Determine Reference Label 19a⟩
⟨Generate Source Output 19b⟩
for i,v in ipairs(ir.doc) do

if v.type == "text" then
threads = v.threads
if threadMatch() then

if g_opts["source-code"] then
stream:write("\\tnslBeginDoc{" .. counter .. "}\\tnslDocPar\n")

end
if hook.doc.text then

stream:write(hook.doc.text(v.text))
else

stream:write(v.text)
end
if g_opts["source-code"] then

stream:write("\n\\tnslEndDoc{}\n")
end

end
elseif v.type:match("^def") and g_opts["source-code"] and threadMatch() then

local nonstop = false
if v.type == "def*" then

nonstop = true
end

stream:write("\\tnslBeginCode{" .. counter .. "}")

local sublabel = nil
if not nonstop then

sublabel = getSubLabel(v.name)
if not sublabel.defined then

sublabel.defined = true
else

sublabel.minor = sublabel.minor + 1
end
stream:write("\\sublabel{" .. tostring(sublabel) .. "}")

if g_opts["margin-tags"] then
stream:write("\\tnslMarginTag{{\\subpageref{")

30th December 2016 Page 17 of 25

Taylor Venable TensileManual (Version 1)

stream:write(tostring(sublabel))
stream:write("}}}")

end
end

stream:write("\\tnslBeginUnitDef{" .. v.name)

if not nonstop and g_opts["defn-page"] then
stream:write("~{\\subpageref{")
local s = tostring(sublabel)
s = v.start and s:gsub("-%d+$", "-0") or s
stream:write(s .. "}}")

end

stream:write("}\\tnslEndUnitDef" .. (v.start and "Plus" or ""))
stream:write("\\tnslBeginDefLine")

When this module has some back references (in other words, this module is used within another)
then we try to figure out their sublabels so we can display them. The use of the getSubLabel()
function here will create the label if it doesn’t already exist, but leave it unmodified if it does. This
means that back references will refer to the last-defined component of that module, or to the first one
if it has not yet appeared.

18a ⟨Weave — Create Documentation 17a⟩+≡ (10a)
if g_opts["back-refs"] and ir.ref[v.name] and #ir.ref[v.name].back > 0 then

stream:write("\\tnslBackRef{\\\\{")
stream:write(tostring(getSubLabel(ir.ref[v.name].back[1])))
stream:write("}}")

end

stream:write("\\tnslEndDefLine")
stream:write("\n")

if nonstop then
GenerateDoc(ir.src[v.name], stream, v.start, {nonstop=true})

else
GenerateDoc(ir.src[v.name], stream, v.start)

end

if g_opts["back-refs"] and ir.ref[v.name] and #ir.ref[v.name].back > 0 then
stream:write("\\tnslUsed{\\\\{")
stream:write(tostring(getSubLabel(ir.ref[v.name].back[1])))
stream:write("}}")

end
stream:write("\\tnslEndCode{}\n")

end
counter = counter + 1

end
end

18b ⟨Output by Thread Match 18b⟩≡ (18a)
local function threadMatch()

if g_opts["thread"] == nil then
return true

elseif threads == nil then
return false

else
for i,v in ipairs(threads) do

if g_opts["thread"] == v then
return true

end
end

end

30th December 2016 Page 18 of 25

Taylor Venable TensileManual (Version 1)

return false
end

19a ⟨Determine Reference Label 19a⟩≡ (18a)
local function getSubLabel(origName)

local sublabel = subcounter[origName]
if not sublabel then

local file = file:match("([^/.]+)%.[^/.]+$")
if not file then

error("Could not determine file name.")
end
file = file:gsub("%s+", "_")
local name = origName:gsub("%s+", "_")
sublabel = { major = counter, minor = 0 }
setmetatable(sublabel, {

__tostring = function (e)
return string.format("tensile:lbl:%s:%s-%s-%s",

file, name, e.major, e.minor)
end

})
subcounter[origName] = sublabel

end
return sublabel

end

8.1 Writing Source
This local function writes the actual source for the given unit to the documentation stream. To ac-
comodate the fact that units may be broken and continue, it also takes a start parameter which tells
the function where to begin reading source chunks. We go through every source chunk until we’ve
either read them all or we encounter a break.

If the source chunk found is a code type, then we first pass it through any pre-processing hook if
present. Thenwe perform a translation to expand unsafe characters into ones suitable for TEX output.
Then we pass it through any post-processing hook that may exist. Finally we write the result to the
documentation output stream.

19b ⟨Generate Source Output 19b⟩≡ (18a)
local function GenerateDoc(unit, stream, start, ...)

options = {...}
nonstop = options[1] and options[1].nonstop
for i = start or 1, #unit do

local v = unit[i]
if v.type == "code" then

local s = v.text
if hook.doc.source.preExpand then

s = hook.doc.source.preExpand(s)
end
if g_opts.expand_unsafe_tex then

s = s:gsub("[{}_%-%|\\<>]", texTrans)
end
if hook.doc.source.postExpand then

s = hook.doc.source.postExpand(s)
end
stream:write(s)

elseif v.type == "ref" then
stream:write("\\tnslStartUnitName{}" .. v.name)
if g_opts["defn-page"] then

stream:write("~{\\rm\\subpageref{")
local s = tostring(getSubLabel(v.name))
s = s:gsub("-%d+$", "-0")
stream:write(s .. "}}")

end

30th December 2016 Page 19 of 25

Taylor Venable TensileManual (Version 1)

stream:write("\\tnslEndUnitName{}")
if not v.followed then

stream:write("\n")
end

elseif v.type == "break" and not nonstop then
break

end
end

end

20a ⟨Find Toplevel Units 20a⟩≡ (10a)
function findTops(ir)

local refs = {}
local tops = {}
for k,v in pairs(ir.src) do

for i2,v2 in ipairs(v) do
if v2.type == "ref" then refs[v2.name] = true end

end
end
for k,v in pairs(ir.src) do

if not refs[k] then tops[#tops + 1] = k end
end
return tops

end

20b ⟨Program Initialization 20b⟩≡ (10a)
-- Program modules to process.
local units = {}

-- Where to write the TeX output.
local weave_output = nil

g_opts = {
["extract-all"] = false ,
["noweb-compat"] = false ,
["indented-refs"] = false ,
["show-tops"] = false ,
["write-ir"] = false ,
["weave"] = true ,
["docs"] = true ,

["margin-tags"] = true ,
["defn-page"] = true ,
["back-refs"] = true ,
["source-code"] = true ,

["expand_unsafe_tex"] = true
}

20c ⟨Option Processing 20c⟩≡ (10a)
local i = 1
while i <= #arg do

local v = arg[i]
if v == "-h" or v == "-help" then

io.stdout:write("This is Tensile, version " .. version.revision .. " (" .. version.date .. " UTC).\n\n")
io.stdout:write([[

Tensile (c) 2009-2010 Taylor Venable. All rights reserved.
Provided under the terms of the Simplified (2-Clause) BSD license.
LaTeX support provided under the LaTeX Project Public License, v1.3c or later.

USAGE:
tensile <options> <literate-file>

30th December 2016 Page 20 of 25

Taylor Venable TensileManual (Version 1)

OPTIONS:

Standard:

-h / -help Show this message.

File Handling:

-indented-refs Allow references to be indented in source.
-list-tops Print all toplevel units and quit.
-noweb-compat Enable Noweb-compatible parsing.
-show-tops Same as "-list-tops".
-write-ir Write intermediate form to file.

Tangled Output:

-extract-all Extract all toplevel units.
-tangle-to Write single a single unit's source to <file>.

This option will be ignored if > 1 unit is tangled.
-unit <name> Tangle unit <name>.

Woven Output:

-dont-weave Do not produce woven output.
-hide-margin-tags Don't display definition tag number in the margin.
-hide-defn-page Don't show references to first definition.
-hide-back-refs Don't print references to usage location.
-hide-source-code Don't output source code in documentation.
-no-docs Same as "-dont-weave".
-thread <name> Only weave output for doc chunks in thread <name>.
-weave-to <file> Write woven output to <file>.

Deprecated:

-R<name> Same as "-unit <name>".
-o <file> Same as "-weave-to <file>".

Email bug reports to taylor@metasyntax.net.
]])

os.exit(0)
end

if v:match("^-R") then
units[#units + 1] = v:sub(3)

elseif v == "-unit" then
if i == #arg then error("too few options") end
units[#units + 1] = arg[i + 1]
i = i + 1

elseif v == "-weave-to" or v == "-o" then
if i == #arg then error("too few options") end
weave_output = arg[i + 1]
i = i + 1

elseif v == "-tangle-to" then
if i == #arg then error("too few options") end
g_opts["tangle-to"] = arg[i + 1]
i = i + 1

elseif v == "-O" then
if i == #arg then error("too few options") end
local s = arg[i + 1]
local k,v = s:match("^([^=]+)=(.*)$")
if k and v then

if ({FALSE = 1, NO = 1})[v:upper()] then v = false
elseif ({TRUE = 1, YES = 1})[v:upper()] then v = true
elseif ({NIL = 1, NULL = 1})[v:upper()] then v = nil end

30th December 2016 Page 21 of 25

Taylor Venable TensileManual (Version 1)

g_opts[k] = v
end
i = i + 1

elseif v == "-thread" then
if i == #arg then error("too few options") end
g_opts["thread"] = arg[i + 1]
i = i + 1

elseif v:match("^%-") then
if v:match("^%-hide%-") then g_opts[v:sub(7)] = false

elseif v:match("^%-omit%-") then g_opts[v:sub(7)] = false
elseif v:match("^%-elide%-") then g_opts[v:sub(8)] = false
elseif v:match("^%-no%-") then g_opts[v:sub(5)] = false
elseif v:match("^%-dont%-") then g_opts[v:sub(7)] = false

else g_opts[v:sub(2)] = true
end

else
file = v

end
i = i + 1

end

if not file then
io.stderr:write("! No file given.\n")
os.exit(1)

end

⟨Check File Existence 22⟩
⟨Load Hooks 23a⟩

local ir
⟨Read Literate Source 23b⟩
⟨Determine Toplevel Units in File 23c⟩

if g_opts["list-tops"] or g_opts["show-tops"] then
⟨Print List of Toplevel Units 23d⟩

end

if g_opts["extract-all"] then
units = tops

end

if #units > 1 then
g_opts["tangle-to"] = nil

end

⟨Tangle Specified Units 23e⟩
⟨Weave Literate Documentation 24⟩

Attempt to open the specified file for reading, to make sure it exists. If it does not, try appending
the extension .tnsl commonly used by Tensile literate programs. If with the extension it still does
not exist then an error is raised and the program stops. Otherwise we update the file name to that
with the extension and continue. In any case, always close all streams opened in an attempt to check
for file existence. One wishes Lua had a function that would do this for me, and not force me to open
files just to confirm existence.

22 ⟨Check File Existence 22⟩≡ (20c)
local x, err = io.open(file, "r")
if not x then

local y = io.open(file .. ".tnsl", "r")
if not y then

io.stderr:write("! Unable to open input file `" .. file .. "' as literate source.\n")
io.stderr:write("! " .. err .. ". Emergency stop.\n")
os.exit(1)

end

30th December 2016 Page 22 of 25

Taylor Venable TensileManual (Version 1)

y:close()
file = file .. ".tnsl"

else
x:close()

end

Initialize the hook tables, and load the local Tensile runtime control file. If it is not present, then
it is no big deal, just catch the error and continue.

23a ⟨Load Hooks 23a⟩≡ (20c)
hook = {}
hook.doc = {}
hook.doc.source = {}
hook.src = {}

if os.getenv("HOME") then
pcall(loadfile(os.getenv("HOME") .. "/.tensilerc"))

end

If we’re going towrite the intermediate representation, we read the file andwrite it’s representation
to disk, then read that representation to continue the work of tangling units or whatever. This is a
good way to test things in the syntax of Tensile itself, and changes to the reading of the literate source
file. If we don’t particularly care about getting the intermediate representation then we can just read
it and use the object that was created within the system, without serializing it out and back in.

23b ⟨Read Literate Source 23b⟩≡ (20c)
if g_opts["write-ir"] then

local tangled = file .. ".tensile"
writeIR(generateIR(file), tangled)
ir = readIR(tangled)

else
ir = generateIR(file)

end

Find all the toplevel units in the literate source, and put them into a list. Then, take that list and
make it an associative array as well, so that the keys are the names of the units. This is for fast lookup
later on, when checking to make sure that the units requested as toplevel units.

23c ⟨Determine Toplevel Units in File 23c⟩≡ (20c)
local tops = findTops(ir)
for i,v in ipairs(tops) do

tops[v] = true
end

If we were asked to simply print out the list of toplevel units, do that and then stop.
23d ⟨Print List of Toplevel Units 23d⟩≡ (20c)

for _,unit in ipairs(tops) do
print(unit)

end
os.exit(0)

Go through the unit list, and if it is not a toplevel unit then print a warning message. Tangle the
code for that toplevel unit, using the user-supplied output file (this may have been overridden by the
system to be nil; if it is then the generateCode function will automatically choose a suitable output
file).

23e ⟨Tangle Specified Units 23e⟩≡ (20c)
for i,v in ipairs(units) do

if not tops[v] then
print("WARNING: " .. v .. " is not a toplevel module.")

end
generateCode(ir, v, g_opts["tangle-to"])

end

30th December 2016 Page 23 of 25

Taylor Venable TensileManual (Version 1)

If an woven output target has not already been specified, then derive it from the literate source
file name by replacing the extension on the file with .tex.

24 ⟨Weave Literate Documentation 24⟩≡ (20c)
if g_opts.weave and g_opts.docs then

weave_output = weave_output or file:gsub("\\.[^.]+$", "") .. ".tex"
generateDoc(ir, weave_output)

end

30th December 2016 Page 24 of 25

Taylor Venable TensileManual (Version 1)

A Bugs

On 1st December 2010, I started logging all bugs in the system so that I could keep better track of
how the quality of the program improves over time.

2010-01-19 • generateIR: Threads were not being recognized when the parser was already
in source mode. Copy the logic from doc mode to source code for determining
threads.

2010-01-09 • generateDoc: Using \text... in X ETEX causes the symbol to be displayed in
the symbol font rather than the typewriter font. Use \verb to get around this
problem.

2010-01-05 • generateDoc: Using < or > in X ETEX causes the sign to be displayed in themath
font rather than the typewriter font. Use <{} and >{} instead.

Colophon

This document was typeset using X ETEX, a direct-to-PDF implementation of Donald Knuth’s TEX
typesetting system with OpenType font handling and features for printing text in any language. It
uses Leslie Lamport’s famous LATEXmacro package. Text in the main body of this document uses the
Minion typeface by Robert Slimbach, set at 10 / 13 × 36. The sans-serif typeface used in the abstract
and for program names is Myriad, a collaboration between the same designer and Carol Twombly.
Code listings and other technical matter which appear throughout the document use the Inconsolata
typeface by Raph Levien.

30th December 2016 Page 25 of 25

	I User's Guide
	Introduction
	Tensile Syntax
	Documentation Chunk Threads
	Source Output: Non-Stop Mode

	Program Options
	Complete Option List
	Standard Options
	File Handling Options
	Tangled Output Options
	Woven Output Options
	Deprecated Options

	Hooks
	Tangling Hooks
	Weaving Hooks

	Intermediate Representation
	Source Code
	References in Noweb-Compat Mode

	Documentation

	II Implementation
	Generating Intermediate Representation
	Noweb Compatibility
	Parsing the Input File
	Reading: Documentation Mode
	Reading: Source Mode

	Tangling Source Code
	Weaving Documentation
	Writing Source

	Bugs

